
Alice KONIGES1, Tim MATTSON2, Yun (Helen) HE1, Richard GERBER1!
!

1) Lawrence Berkeley National Laboratory, USA!
2) Intel!

!
September, 2015

Enabling
Application
Portability across
HPC Platforms:

An Application
Perspective

-	1	-	

2 2

Disclaimer
• The views expressed in this talk are those of

the speakers and not their employers.

I work in Intel’s research labs. I don’t build products.
Instead, I get to poke into dark corners and think silly

thoughts… just to make sure we don’t miss any great ideas.

Hence, my views are by design far “off the roadmap”.

•  This presentation is a “conversation” between two talks .. One
from NERSC and one from me. Just to be clear, when a slide
comes from “my talk” I always indicate that fact by putting a

picture of me in a kayak on the slide in question.

• I work with very smart people. Anything stupid I say
is mine … don’t blame my collaborators.

-	3	-	

Cori: A pre-exascale supercomputer for the
Office of Science workload

•  System	will	begin	to	transi1on	
the	workload	to	more	energy	
efficient	architectures	

•  Will	showcase	technologies	
expected	in	exascale	systems	
–  Processors	with	many	‘slow’	cores	
and	longer	vector	units		

–  Deepening	memory	and	storage	
hierarchies	

System	named	a=er	Gerty	Cori,	
Biochemist	and	first	American	
woman	to	receive	the	Nobel	
prize	in	science.	

Image	source:	Wikipedia	

-	4	-	

Cori: A pre-exascale supercomputer for the
Office of Science workload

•  System	will	begin	to	transi1on	
the	workload	to	more	energy	
efficient	architectures	

•  Will	showcase	technologies	
expected	in	exascale	systems	
–  Processors	with	many	‘slow’	cores	
and	longer	vector	units		

–  Deepening	memory	and	storage	
hierarchies	

System	named	a=er	Gerty	Cori,	
Biochemist	and	first	American	
woman	to	receive	the	Nobel	
prize	in	science.	

Image	source:	Wikipedia	

It	is	so	nice	that	they	named	their	machine	
a=er	a	chemist.		Chemists	rule!!!!	

-	5	-	

Cori Configuration – and a new home

•  Over	9,300	Knights	Landing	

compute	nodes	
–  Self-hosted,	up	to	72	cores,	16	GB	
high	bandwidth	memory	

•  1,600	Haswell	compute	nodes	as	
a	data	par11on	

•  Aries	Interconnect	
•  Lustre	File	system		

–  28	PB	capacity,	>700	GB/sec	I/O	
bandwidth	

•  Delivery	in	two	phases,	summer	
2015	and	2016	into	new	CRT	
facility	

-	6	-	

Cori Configuration – and a new home

•  Over	9,300	Knights	Landing	

compute	nodes	
–  Self-hosted,	up	to	72	cores,	16	GB	
high	bandwidth	memory	

•  1,600	Haswell	compute	nodes	as	
a	data	par11on	

•  Aries	Interconnect	
•  Lustre	File	system		

–  28	PB	capacity,	>700	GB/sec	I/O	
bandwidth	

•  Delivery	in	two	phases,	summer	
2015	and	2016	into	new	CRT	
facility	

Wait	a	minute.		I’m	the	Intel	guy.		
It’s	my	job	to	talk	about	

hardware	

Increasing parallelism in
Xeon and Xeon Phi

Intel® Xeon®
processor

64-bit
series

Intel® Xeon®
processor

5100
series

Intel® Xeon®
processor

5500
series

Intel® Xeon®
processor

5600
series

Intel® Xeon®
processor
code-named

Sandy
Bridge

EP

Intel® Xeon®
processor
code-named

Ivy
Bridge

EP

Intel® Xeon®
processor
code-named

Haswell
EX

1 2 4 6 8 12 18

2 2 8 12 16 24 36

128 128 128 128 256 256 256

Intel® Xeon Phi™
coprocessor

Knights
Corner

Intel® Xeon Phi™
processor &

coprocessor

Knights
Landing1

61 60+

244 4x
#cores

512 2x512

*Product specification for launched and shipped products available on ark.intel.com. 1. Not launched.

Core(s)

Threads

SIMD
Width

Lots	of	cores	with	in	package	memory	

8 Source: Avinash Sodani, Hot Chips 2015 KNL talk

Connec1ng	1les	

9 Source: Avinash Sodani, Hot Chips 2015 KNL talk

Network	interface	Chip	in	the	
package	…		

10 Source: Avinash Sodani, Hot Chips 2015 KNL talk

Cache		
Model	

Let	the	hardware	automaZcally	
manage	the	integrated	on-package	
memory	as	an	“L3”	cache	between	
KNL	CPU	and	external	DDR	

Flat		
Model	

Manually	manage	how	your	
applicaZon	uses	the	integrated	on-
package	memory	and	external	DDR	
for	peak	performance	

Hybrid	
Model	

Harness	the	benefits	of	both	cache	
and	flat	models	by	segmenZng	the	
integrated	on-package	memory	

Maximum	performance	through	higher	memory	bandwidth	and	
flexibility	

Knights Landing Integrated On-Package Memory!

Near
Memory

HBW
In-Package
Memory

KNL CPU

HBW
In-Package
Memory

HBW
In-Package
Memory

HBW
In-Package
Memory

HBW
In-Package
Memory

HBW
In-Package
Memory

. . .

. . .

CPU Package

DDR

DDR

DDR

. . .

Cache	

PCB

Near
Memory

Far
 Memory

Side
View

Top
View

Slide	from	Intel	-	11	-	

-	12	-	

To run effectively on Cori users will have to:

•  Manage	Domain	Parallelism	
–  independent	program	
units;	explicit	

•  Increase	Node	Parallelism	
–  independent	execuZon	
units	within	the	program;	
generally	explicit	

•  Exploit	Data	Parallelism	
–  Same	operaZon	on		
mulZple	elements	

•  Improve	data	locality	
–  Cache	blocking;		
Use	on-package	memory	

MPI	 MPI	 MPI	

x	

y	

z	

Threads	

x	

y	

z	

|--> DO I = 1, N
| R(I) = B(I) + A(I)
|--> ENDDO

Threads	 Threads	

-	13	-	

To run effectively on Cori users will have to:

•  Manage	Domain	Parallelism	
–  independent	program	
units;	explicit	

•  Increase	Node	Parallelism	
–  independent	execuZon	
units	within	the	program;	
generally	explicit	

•  Exploit	Data	Parallelism	
–  Same	operaZon	on		
mulZple	elements	

•  Improve	data	locality	
–  Cache	blocking;		
Use	on-package	memory	

MPI	 MPI	 MPI	

x	

y	

z	

Threads	

x	

y	

z	

|--> DO I = 1, N
| R(I) = B(I) + A(I)
|--> ENDDO

Threads	 Threads	

You	mean	vectorizaZon.		The	only	way	you	can	
be	happy	with	KNL	is	if	you	can	keep	the	pair	

of	vector	units	per	core	busy.	

Vector (SIMD) Programming

•  Architects love vector units,
since they permit space- and
energy- efficient parallel
implementations.

•  However, standard SIMD
instructions on CPUs are
inflexible, and can be difficult to
use.

•  Options:
– Let the compiler do the job
– Assist the compiler with language

level constructs for explicit
vectoriztion.

– Use intrinsics … an assembly level
approach.

4	way	SIMD	(SSE)	 16	way	SIMD	
(Xeon™	PHI)	

Slide Source: Kurt Keutzer UC Berkeley, CS194 lecture

Example Problem:
Numerical Integration

∫ 4.0
(1+x2) dx = π

0

1

∑ F(xi)Δx ≈ π
i = 0

N

Mathematically, we know that:

We can approximate the integral as a
sum of rectangles:

Where each rectangle has width Δx and
height F(xi) at the middle of interval i.

F(
x)

 =
 4

.0
/(1

+x
2)

4.0

2.0

1.0 X 0.0

16

Serial PI program

static long num_steps = 100000;
float step;
int main ()
{ int i; float x, pi, sum = 0.0;

 step = 1.0/(float) num_steps;

 for (i=0;i< num_steps; i++){
 x = (i+0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }
 pi = step * sum;

}

Normally, I’d use double types throughout to minimize roundoff errors especially
on the accumulation into sum. But to maximize impact of vectorization for these
exercise, we’ll use float types.

17

Explicit Vectorization PI program

static long num_steps = 100000;
float step;
int main ()
{ int i; float x, pi, sum = 0.0;

 step = 1.0/(float) num_steps;
 #pragma omp simd reduction(+:sum)

 for (i=0;i< num_steps; i++){
 x = (i+0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }
 pi = step * sum;

}

Note that literals (such as 4.0, 1.0 and 0.5) are not explicitly declared with the
desired type. The C language treats these as “double” and that impacts
compiler optimizations. We call this the default case.

18

Explicit Vectorization PI program

static long num_steps = 100000;
float step;
int main ()
{ int i; float x, pi, sum = 0.0;

 step = 1.0f/(float) num_steps;
 #pragma omp simd reduction(+:sum)

 for (i=0;i< num_steps; i++){
 x = (i+0.5f)*step;
 sum = sum + 4.0f/(1.0f+x*x);
 }
 pi = step * sum;

}

Note that literals (such as 4.0, 1.0 and 0.5) are explicitly declared as type float
(to match the types of the variables in this code. This greatly enhances
vectorization and compiler optimization.

Literals as double (no-vec), 0.012 secs
Literals as Float (no-vec), 0.0042 secs

19

Pi Program: Vectorization with intriniscs (SSE)
 float pi_sse(int num_steps)
{ float scalar_one =1.0, scalar_zero = 0.0, ival, scalar_four =4.0, step, pi, vsum[4];
 step = 1.0/(float) num_steps;

 __m128 ramp = _mm_setr_ps(0.5, 1.5, 2.5, 3.5);
 __m128 one = _mm_load1_ps(&scalar_one);
 __m128 four = _mm_load1_ps(&scalar_four);
 __m128 vstep = _mm_load1_ps(&step);
 __m128 sum = _mm_load1_ps(&scalar_zero);
 __m128 xvec; __m128 denom; __m128 eye;

 for (int i=0;i< num_steps; i=i+4){ // unroll loop 4 times
 ival = (float)i; // and assume num_steps%4 = 0
 eye = _mm_load1_ps(&ival);
 xvec = _mm_mul_ps(_mm_add_ps(eye,ramp),vstep);
 denom = _mm_add_ps(_mm_mul_ps(xvec,xvec),one);
 sum = _mm_add_ps(_mm_div_ps(four,denom),sum);
 }
 _mm_store_ps(&vsum[0],sum);
 pi = step * (vsum[0]+vsum[1]+vsum[2]+vsum[3]);
 return pi;
}

20

Pi Program: Vector intriniscs plus OpenMP
 float pi_sse(int num_steps)
{ float scalar_one =1.0, scalar_zero = 0.0, ival, scalar_four =4.0, step, pi, vsum[4];
 float local_sum[NTHREADS]; // set NTHREADS elsewhere, often to num of cores
 step = 1.0/(float) num_steps; pi = 0.0;
 #pragma omp parallel
 { int i, ID=omp_get_thread_num();
 __m128 ramp = _mm_setr_ps(0.5, 1.5, 2.5, 3.5);
 __m128 one = _mm_load1_ps(&scalar_one);
 __m128 four = _mm_load1_ps(&scalar_four);
 __m128 vstep = _mm_load1_ps(&step);
 __m128 sum = _mm_load1_ps(&scalar_zero);
 __m128 xvec; __m128 denom; __m128 eye;
 #pragma omp for
 for (int i=0;i< num_steps; i=i+4){
 ival = (float)i;
 eye = _mm_load1_ps(&ival);
 xvec = _mm_mul_ps(_mm_add_ps(eye,ramp),vstep);
 denom = _mm_add_ps(_mm_mul_ps(xvec,xvec),one);
 sum = _mm_add_ps(_mm_div_ps(four,denom),sum);
 }
 _mm_store_ps(&vsum[0],sum);
 local_sum[ID] = step * (vsum[0]+vsum[1]+vsum[2]+vsum[3]);
 }
 for(int k = 0; k<NUM_THREADS;k++) pi+=local_sum[k];
 return pi;
}

To parallelize with OpenMP:
1.  Promote local_sum to an

array to there is a variable
private to each thread but
available after the parallel
region

2.  Add parallel region and
declare vector registers inside
the parallel region so each
thread has their own copy.

3.  Add workshop loop (for)
construct

4.  Add local sums after the
parallel region to create the
final value for pi

21

PI program Results:
4194304 steps
Times in Seconds (50 runs, min time reported)

0

0.001

0.002

0.003

0.004

0.005

0.006

Base: lits
float -no-vec

Lits float,
autovrec

List Float,
OMP SIMD

Lits Float,
OMP SIMD

Par For

SSE SSE, OMP
par for

run times(sec)

–  Intel Core i7, 2.2 Ghz, 8 GM 1600 MHz DDR3, Apple MacBook Air OS X 10.10.5.
–  Intel(R) C Intel(R) 64 Compiler XE for applications running on Intel(R) 64, Version 15.0.3.187 Build 20150408

Float, autovec, 0.0023 secs
Float, OMP SIMD, 0.0028 secs
Float, SSE, 0.0016 secs

Explicit Vectorization – Performance
Impact

3.66x

2.04x 2.13x

4.34x

1.47x

2.40x

0.00x

0.50x

1.00x

1.50x

2.00x

2.50x

3.00x

3.50x

4.00x

4.50x

5.00x

Mandelbrot Volume
Rendering

BlackScholes Fast Walsh Perlin Noise SGpp

R
el

at
iv

e
Sp

ee
d-

up

(h
ig

he
r i

s
be

tte
r)

ICC auto-vec

ICC SIMD directive

Source: M. Klemm, A. Duran, X. Tian, H. Saito, D. Caballero, and X. Martorell, “Extending OpenMP
with Vector Constructs for Modern Multicore SIMD Architectures. In Proc. of the Intl. Workshop on
OpenMP”, pages 59-72, Rome, Italy, June 2012. LNCS 7312.

Explicit Vectorization looks better when you move to more complex problems.

What about application portability?

•  Major	US	computer	centers	have	and	will	con1nue	to	have	

fundamentally	different	architectures,	for	example:	
–  NERSC	is	based	on	KNL		
–  OLCF	and	LLNL	have	announced	an	IBM+NVIDIA	architecture	

– FUNDAMENTALLY	DIFFERENT	
	
•  Will	applica1ons	be	able	to	run	across	both	architectures?	
•  Several	DOE	workshops	to	address	portability	

–  Best	PracZces	ApplicaZon	portability	workshop	–	Sept	2015	
	

-	23	-	

Application Programmers Dilemma

•  It	actually	only	seemed	hard	before	–	
–  First	there	were	vectors,	we	coped	
–  Then	there	was	the	MPP	revoluZon	so,	

• We	ripped	out	all	that	vector	code	in	favor	of	message	
passing	

• We	finally	came	up	with	a	standard	that	most	could	live	
with	–MPI	

–  For	the	brave	of	heart	you	could	try	MPI	+	OpenMP,	but	it	
really	didn’t	do	much	

–  OpenMP	worked	well	on	smaller	numbers	of	processors	
(cores)	in	shared	memory	

Application Programmers Dilemma

•  It	actually	only	seemed	hard	before	–	
–  First	there	were	vectors,	we	coped	
–  Then	there	was	the	MPP	revoluZon	so,	

• We	ripped	out	all	that	vector	code	in	favor	of	message	
passing	

• We	finally	came	up	with	a	standard	that	most	could	live	
with	–MPI	

–  For	the	brave	of	heart	you	could	try	MPI	+	OpenMP,	but	it	
really	didn’t	do	much	

–  OpenMP	worked	well	on	smaller	numbers	of	processors	
(cores)	in	shared	memory	

Scaling	is	typically	a	funcZon	of	the	algorithm	and	how	you	
use	an	API,	not	the	API	itself.		I	haven’t	seen	the	codes	my	
good	friends	from	NERSC	are	talking	about	when	making	this	
statement,	but	in	my	experience,	HPC	codes	o=en	poorly	use	
OpenMP.		They	just	liner	their	codes	with	“parallel	for”;	not	
thinking	about	restructuring	code	to	opZmize	data	access	
panerns	(NUMA	issues)	and	reduce	thread	management	
overhead	

Programming Models by the Dozen, !
what to do now

Emperor	Joseph	II:	My	dear	young	man,	don't	
take	it	too	hard.	Your	work	is	ingenious.	It's	
quality	work.	And	there	are	simply	too	many	
notes,	that's	all.	Just	cut	a	few	and	it	will	be	
perfect.	
	
Mozart:	Which	few	did	you	have	in	mind,	
Majesty?	
	

We tried to solve the programmability problem by
searching for the right programming environment

ABCPL
ACE
ACT++
Active messages
Adl
Adsmith
ADDAP
AFAPI
ALWAN
AM
AMDC
AppLeS
Amoeba
ARTS
Athapascan-0b
Aurora
Automap
bb_threads
Blaze
BSP
BlockComm
C*.
"C* in C
C**
CarlOS
Cashmere
C4
CC++
Chu
Charlotte
Charm
Charm++
Cid
Cilk
CM-Fortran
Converse
Code
COOL

CORRELATE
CPS
CRL
CSP
Cthreads
CUMULVS
DAGGER
DAPPLE
Data Parallel C
DC++
DCE++
DDD
DICE.
DIPC
DOLIB
DOME
DOSMOS.
DRL
DSM-Threads
Ease .
ECO
Eiffel
Eilean
Emerald
EPL
Excalibur
Express
Falcon
Filaments
FM
FLASH
The FORCE
Fork
Fortran-M
FX
GA
GAMMA
Glenda

GLU
GUARD
HAsL.
Haskell
HPC++
JAVAR.
HORUS
HPC
HPF
IMPACT
ISIS.
JAVAR
JADE
Java RMI
javaPG
JavaSpace
JIDL
Joyce
Khoros
Karma
KOAN/Fortran-S
LAM
Lilac
Linda
JADA
WWWinda
ISETL-Linda
ParLin
Eilean
P4-Linda
Glenda
POSYBL
Objective-Linda
LiPS
Locust
Lparx
Lucid
Maisie
Manifold

Mentat
Legion
Meta Chaos
Midway
Millipede
CparPar
Mirage
MpC
MOSIX
Modula-P
Modula-2*
Multipol
MPI
MPC++
Munin
Nano-Threads
NESL
NetClasses++
Nexus
Nimrod
NOW
Objective Linda
Occam
Omega
OpenMP
Orca
OOF90
P++
P3L
p4-Linda
Pablo
PADE
PADRE
Panda
Papers
AFAPI.
 Para++
Paradigm

Parafrase2
Paralation
Parallel-C++
Parallaxis
ParC
ParLib++
ParLin
Parmacs
Parti
pC
pC++
PCN
PCP:
PH
PEACE
PCU
PET
PETSc
PENNY
Phosphorus
POET.
Polaris
POOMA
POOL-T
PRESTO
P-RIO
Prospero
Proteus
QPC++
PVM
PSI
PSDM
Quake
Quark
Quick Threads
Sage++
SCANDAL
 SAM

pC++
SCHEDULE
SciTL
POET
SDDA.
SHMEM
SIMPLE
Sina
SISAL.
distributed smalltalk
SMI.
SONiC
Split-C.
SR
Sthreads
Strand.
SUIF.
Synergy
Telegrphos
SuperPascal
TCGMSG.
Threads.h++.
TreadMarks
TRAPPER
uC++
UNITY
UC
V
ViC*
Visifold V-NUS
VPE
Win32 threads
WinPar
WWWinda
 XENOOPS
XPC
Zounds
ZPL

Parallel programming environments in the 90’s

Third party names are the property of their owners.

A warning I’ve been making for the last 10 years

28

My optimistic view from 2005 …

We’ve learned our
lesson … we emphasize

a small number of
industry standards	

But we didn’t learn our lesson
History is repeating itself!

Third party names are the property of their owners.

 A small sampling of models from the NEW golden age of
parallel programming (from the literature 2010-2012)

We’ve slipped back into the “just create a new language” mentality.	
Note: I’m not criticizing these technologies. I’m criticizing our

collective urge to create so many of them.

AM++
ArBB
BSP
C++11
C++AMP
Charm++
Chapel
Cilk++
CnC
coArray Fortran
Codelets

Copperhead
CUDA
DryadOpt
Erlang
Fortress
GA
GO
Gossamer
GPars
GRAMPS
Hadoop
HMMP

ISPC
Java
Liszt
MapReduce
MATE-CG
MCAPI
MPI
NESL
OoOJava
OpenMP
OpenCL
OpenSHMEM

OpenACC
PAMI
Parallel Haskell
ParalleX
PATUS
PLINQ
PPL
Pthreads
PXIF
PyPar
Plan42
RCCE

Scala
SIAL
STAPL
STM
SWARM
TBB
UPC
Win32
threads
X10
XMT
ZPL

What has gone wrong?

n  In the old days (the 90’s), the applications community
were more aggressive with the vendors.
¨  MPI was created and the applications community lined up behind

it. Vendors responded so that within a year of the first MPI spec,
quality implementation were everywhere

¨  OpenMP was created and the applications community wrote it
into RFPs and committed to it. Within a year of the first OpenMP
spec, quality implementations were everywhere.

n  Today?
¨  Users are letting vendors lock them to a platform. What message

are you giving to the vendor community when you use CUDA* or
OpenACC*? If you won’t commit to a vendor neutral, open
standard, why should the vendors?

31 *Third party names are the property of their owners

An application programmers biggest fear

•  An	applica1on	programmers	biggest	fear	is	that	the	
language	they	toiled	to	learn	will	be	the	wrong	
choice	
–  Doesn’t	give	performance	
–  Too	hard	to	figure	out	
–  No	interoperability	

–  NOT	THERE	TWO	YEARS	LATER		

Community input to open standards provides
a path forward for portability

•  Portability	is	difficult,	nothing	about	it	makes	parallel	
programming	easier,	except	perhaps	it	encourages	the	
programmer	to	hide	parallelism	

•  People	are	generally	in	favor	of	using	open	standards	
and	working	towards	good	standards	
–  Examples:	MPI	Forum,	OpenMP	Architecture	Review	Board,	etc.	

	
Jeff	Squyers	(Cisco)	at	EuroMPI	Sept.	2015:	
..we	will	be	“Defining	what	parallel	compuZng	will	be	for	the	
world,	this	is	the	MPI	forum.	For	everyone.”	
	

Whining about performance
Portability

•  Do we have performance portability today?
– NO: Even in the “serial world” programs routinely deliver single digit

efficiencies.
–  If the goal is a large fraction of peak performance, you will need to

specialize code for the platform.

•  But there is a pretty darn good performance portable
language. It’s called OpenCL

Matrix multiplication example:
Naïve solution, one dot product per
element of C

•  Multiplication of two dense matrices.

•  To make this fast, you need to break the problem down into chunks that do lots
of work for sub problems that fit in fast memory (OpenCL local memory).

= x
A(i,:)

B(:,j)
C(i,j)

Dot product of a row of A and a column of B for each element of C

Matrix multiplication:
sequential code

void mat_mul(int N, float *A, float *B, float *C)!
{!
 int i, j, k;!
 for (i = 0; i < N; i++) {!
 for (j = 0; j < N; j++) {!
 for (k = 0; k < N; k++) { !
 C[i*N+j] += A[i*N+k] * B[k*N+j];!
 }!
 }!
 }!
}!

Matrix multiplication:
sequential code

void mat_mul(int N, float *A, float *B, float *C)!
{!
 int i, j, k;!
 for (i = 0; i < N; i++) !
 for (j = 0; j < N; j++)!
 for (k = 0; k < N; k++)!
 C[i*N+j] += A[i*N+k] * B[k*N+j];!
}!
!
!

Let’s get rid of all
those ugly brackets

Matrix multiplication: sequential code

void mat_mul(int N, float *A, float *B, float *C)!
{!
 int i, j, k; !
 float tmp;!
 int NB=N/block_size; // assume N%block_size=0!
 for (ib = 0; ib < NB; ib++) !
 for (i = ib*NB; i < (ib+1)*NB; i++)!
 for (jb = 0; jb < NB; jb++) !
 for (j = jb*NB; j < (jb+1)*NB; j++)!
 for (kb = 0; kb < NB; kb++) !
 for (k = kb*NB; k < (kb+1)*NB; k++)!
 C[i*N+j] += A[i*N+k] * B[k*N+j];!
} !

Break each loop
into chunks with a
size chosen to
match the size of
your fast memory

Matrix multiplication: sequential code

void mat_mul(int N, float *A, float *B, float *C)!
{!
 int i, j, k; !
 float tmp;!
 int NB=N/block_size; // assume N%block_size=0!
 for (ib = 0; ib < NB; ib++) !
 for (jb = 0; jb < NB; jb++) !
 for (kb = 0; kb < NB; kb++) !
!
 for (i = ib*NB; i < (ib+1)*NB; i++)!
 for (j = jb*NB; j < (jb+1)*NB; j++)!
 for (k = kb*NB; k < (kb+1)*NB; k++)!
 C[i*N+j] += A[i*N+k] * B[k*N+j];!
} !

Rearrange loop nest
to move loops over
blocks “out” and

leave loops over a
single block together

Matrix multiplication: sequential code

void mat_mul(int N, float *A, float *B, float *C)!
{!
 int i, j, k; !
 float tmp;!
 int NB=N/block_size; // assume N%block_size=0!
 for (ib = 0; ib < NB; ib++) !
 for (jb = 0; jb < NB; jb++) !
 for (kb = 0; kb < NB; kb++) !
!
 for (i = ib*NB; i < (ib+1)*NB; i++)!
 for (j = jb*NB; j < (jb+1)*NB; j++)!
 for (k = kb*NB; k < (kb+1)*NB; k++)!
 C[i*N+j] += A[i*N+k] * B[k*N+j];!
} !

This is just a local
matrix multiplication

of a single block

Matrix multiplication: sequential code

void mat_mul(int N, float *A, float *B, float *C)!
{!
 int i, j, k; !
 int NB=N/block_size; // assume N%block_size=0!
 for (ib = 0; ib < NB; ib++) !
 for (jb = 0; jb < NB; jb++) !
 for (kb = 0; kb < NB; kb++) !
 sgemm(C, A, B, …) // Cib,jb = Aib,kb * Bkb,jb!
!
 !
 !
 !
} !

Note: sgemm is the name of the level three BLAS routine to multiply two matrices

= x

A(ib,:) B(:,jb) C(ib,jb)

Blocked matrix multiply: kernel
#define blksz 16
__kernel void mmul(
 const unsigned int N,
 __global float* A,
 __global float* B,
 __global float* C,
 __local float* Awrk,
 __local float* Bwrk)
{
 int kloc, Kblk;
 float Ctmp=0.0f;

 // compute element C(i,j)
 int i = get_global_id(0);
 int j = get_global_id(1);

 // Element C(i,j) is in block C(Iblk,Jblk)
 int Iblk = get_group_id(0);
 int Jblk = get_group_id(1);

 // C(i,j) is element C(iloc, jloc)
 // of block C(Iblk, Jblk)
 int iloc = get_local_id(0);
 int jloc = get_local_id(1);
 int Num_BLK = N/blksz;

 // upper-left-corner and inc for A and B
 int Abase = Iblk*N*blksz; int Ainc = blksz;
 int Bbase = Jblk*blksz; int Binc = blksz*N;

 // C(Iblk,Jblk) = (sum over Kblk)
A(Iblk,Kblk)*B(Kblk,Jblk)
 for (Kblk = 0; Kblk<Num_BLK; Kblk++)
 { //Load A(Iblk,Kblk) and B(Kblk,Jblk).
 //Each work-item loads a single element of the two
 //blocks which are shared with the entire work-group

 Awrk[jloc*blksz+iloc] = A[Abase+jloc*N+iloc];
 Bwrk[jloc*blksz+iloc] = B[Bbase+jloc*N+iloc];

 barrier(CLK_LOCAL_MEM_FENCE);

 #pragma unroll
 for(kloc=0; kloc<blksz; kloc++)
 Ctmp+=Awrk[jloc*blksz+kloc]*Bwrk[kloc*blksz+iloc];

 barrier(CLK_LOCAL_MEM_FENCE);

 Abase += Ainc; Bbase += Binc;
 }
 C[j*N+i] = Ctmp;
}

Blocked matrix multiply: kernel
#define blksz 16
__kernel void mmul(
 const unsigned int N,
 __global float* A,
 __global float* B,
 __global float* C,
 __local float* Awrk,
 __local float* Bwrk)
{
 int kloc, Kblk;
 float Ctmp=0.0f;

 // compute element C(i,j)
 int i = get_global_id(0);
 int j = get_global_id(1);

 // Element C(i,j) is in block C(Iblk,Jblk)
 int Iblk = get_group_id(0);
 int Jblk = get_group_id(1);

 // C(i,j) is element C(iloc, jloc)
 // of block C(Iblk, Jblk)
 int iloc = get_local_id(0);
 int jloc = get_local_id(1);
 int Num_BLK = N/blksz;

 // upper-left-corner and inc for A and B
 int Abase = Iblk*N*blksz; int Ainc = blksz;
 int Bbase = Jblk*blksz; int Binc = blksz*N;

 // C(Iblk,Jblk) = (sum over Kblk)
A(Iblk,Kblk)*B(Kblk,Jblk)
 for (Kblk = 0; Kblk<Num_BLK; Kblk++)
 { //Load A(Iblk,Kblk) and B(Kblk,Jblk).
 //Each work-item loads a single element of the two
 //blocks which are shared with the entire work-group

 Awrk[jloc*blksz+iloc] = A[Abase+jloc*N+iloc];
 Bwrk[jloc*blksz+iloc] = B[Bbase+jloc*N+iloc];

 barrier(CLK_LOCAL_MEM_FENCE);

 #pragma unroll
 for(kloc=0; kloc<blksz; kloc++)
 Ctmp+=Awrk[jloc*blksz+kloc]*Bwrk[kloc*blksz+iloc];

 barrier(CLK_LOCAL_MEM_FENCE);

 Abase += Ainc; Bbase += Binc;
 }
 C[j*N+i] = Ctmp;
}

Load A and B
blocks, wait for all
work-items to finish

Wait for
everyone to
finish before
going to next

iteration of Kblk
loop.

Matrix multiplication … Portable Performance

Case CPU Xeon Phi Core i7, HD
Graphics

NVIDIA
Tesla

Sequential C (compiled /O3) 224.4 1221.5
C(i,j) per work-item, all
global 841.5 13591 3721

C row per work-item, all
global 869.1 4418 4196

C row per work-item, A row
private 1038.4 24403 8584

C row per work-item, A
private, B local 3984.2 5041 8182

Block oriented approach
using local (blksz=16) 12271.3 74051

(126322*)
38348

(53687*) 119305

Block oriented approach
using local (blksz=32) 16268.8

Intel® Core™ i5-2520M CPU @2.5 GHz (dual core) Windows 7 64 bit OS, Intel compiler 64 bit version 13.1.1.171, OpenCL SDK 2013, MKL 11.0 update 3.

Third party names are the property of their owners.
These are not official benchmark results. You may observe completely
different results should you run these tests on your own system.

Xeon Phi SE10P, CL_CONFIG_MIC_DEVICE_2MB_POOL_INIT_SIZE_MB = 4 MB
* The comp was run twice and only the second time is reported (hides cost of memory movement.

Intel Core i7-4850HQ @ 2.3 GHz which has an Intel HD Graphics 5200 w/ high speed memory. ICC 2013 sp1 update 2.
Tesla®	M2090	GPU	from	NVIDIA®	with	a	max	of	16	compute	units,	512	PEs	

•  Single Precision matrix multiplication (order 1000 matrices)

Could I do this with
OpenMP today? No.
But I look forward to
trying once OpenMP

is ready

BUDE: Bristol University
Docking Engine

One program running well on a wide range of platforms

Whining about performance
Portability

•  Do we have performance portability today?
– NO: Even in the “serial world” programs routinely deliver single digit

efficiencies.
–  If the goal is a large fraction of peak performance, you will need to

specialize code for the platform.

•  However there is a pretty darn good performance portable
language. It’s called OpenCL

•  But this focus on mythical “Performance Portability” misses the
point. The issue is “maintainability”.
– You must be able maintain a body of code that will live for many years

over many different systems.
– Having a common code base using a portable programming

environment … even if you must fill the code with if-defs or have
architecture specific versions of key kernels … is the only way to
support maintainability.

~35 Application White Papers submitted to
recent DOE Workshop on Portability

•  Take-aways:	
–  Almost	Everyone	is	prepared	to	try/use	OpenMP4.0	and	
beyond	to	help	with	portability	issues	

–  Even	with	OpenMP	accelerator	direcZves,	etc.,	two	
different	source	codes	are	necessary		

–  Different	source	codes	for	two	or	more	parallel	
programming	constructs	does	encourage	people	to	
contain	parallel	code	

•  This	is	not	as	easy	to	see	in	direcZve	based	approaches	as	with	
other	approaches	based	more	on	libraries	

– Most	people	are	resigned	to	having	different	sources	for	
different	plavorms,	with	simple	#ifdef	or	other	
mechanisms	

What is holding OpenMP back

•  Mature	implementa1ons	are	not	everywhere	
•  Standard	for	accelerators	is	s1ll	being	defined	
•  Performance	is	not	there	yet	(see	next	two	slides):	

On	the	performance	portability	of	structured	grid	codes	on	many-core	
computer	architectures",	S.N.	McIntosh-Smith,	M.	Boulton,	D.	Curran	and	
J.R.	Price.	ISC,	Leipzig,	pp	53-75,	June	2014.		

On the Performance Portability of structured Grid codes
… McIntosh-Smith et.al. ISC 2014

		

D3Q19-BGK	Lazce	Boltzman	code	

On the Performance Portability of structured Grid
codes … McIntosh-Smith et.al. ISC 2014

Cloverleaf	lagraingian-Eulerian	hydrodynamics	code	

Sparse matrix vector product: GPU vs. CPU

51

0

1

2

3

4

5

6

7

8

9

 S
in

gl
e

Pr
ec

is
io

n
Sp

M
VM

FE
M

/c
an

t
 (

G
FL

O
PS

)

Source: Victor Lee et. al.
“Debunking the 100X GPU vs. CPU
Myth”, ISCA 2010

NVIDIA® GTX 280 GPU vs. an Intel® Core i7 960 CPU

GPU CPU
Baseline

8 threads
on 4
cores

Vectorize Register
tiling +

Pipelining

Cache
Blocking

•  [Vazquez09]: reported a 51X speedup for an NVIDIA® GTX295 vs. a Core
2 Duo E8400 CPU … but they used an old CPU with unoptimized code

•  Heavily optimized both the GPU kernels and the CPU code.
•  We did not include memory movement onto the GPU … even

though that would make the CPU look better!

Result: a 2:1 speedup … which makes
sense given better bandwidth of GDDR5

*third party names are the property of their owners

CASE STUDY: XGC1 PIC Fusion Code	
•  Par1cle-in-cell	code	used	to	study	turbulent	transport	in	magne1c	confinement	fusion	plasmas.		
•  Uses	fixed	unstructured	grid.	Hybrid	MPI/OpenMP	for	both	spa1al	grid	and	par1cle	data.		(plus	PGI	

CUDA	Fortran,	OpenACC)	
•  Excellent	overall	MPI	scalability	
•  Internal	profiling	1mer	borrowed	from	CESM	
•  Uses	PETSc	Poisson	Solver	(separate	NESAP	effort)	
•  60k+	lines	of	Fortran90	codes.	
•  For	each	1me	step:	

–  Deposit	charges	on	grid		
–  Solve	ellipZc	equaZon	to	obtain	electro-magneZc	potenZal	
–  Push	parZcles	to	follow	trajectories	using	forces	computed	from	background	potenZal	(~50-70%	of	Zme)		
–  Account	for	collision	and	boundary	effects	on	velocity	grid	

•  Most	1me	spent	in	Par1cle	Push	and	Charge	Deposi1on		
	

-	52	-	

Unstructured	triangular	mesh	grid	due	to	
complicated	edge	geometry	

Sample	Matrix	of	communicaZon	volume	

Programming Portability

•  Currently	XGC1	runs	on	many	pladorms	
•  Part	of	NESAP	and	ORNL	CAAR	programs	
•  Applied	for	ANL	Theta	program	
•  Previously	used	PGI	CUDA	Fortran	for	accelerators	
•  Exploring	OpenMP	4.0	target	direc1ves	and	OpenACC.	
•  Have	#ifdef	_OpenACC	and	#ifdef	_OpenMP	in	code.	
•  Hope	to	have	as	fewer	compiler	dependent	direc1ves	as	

possible.	
•  Nested	OpenMP	is	used	
•  Needs	thread	safe	PSPLIB	and	PETSc	libraries.	

-	53	-	

CUDA Fortran code conversion (Jianying Lang, PPPL)

anributes(global)	&	
subrouZne	pushe_kernel_gpu(istep,ipc,phase0,	&	
																			diag_on,dt_now)	
																.	
																.	
																.	
ith	=	1+	((threadIdx%x-1)	+	(threadIdx%y-1)*blockDim%x)	+		&	
						((blockIdx%x-1)	+	(blockIdx%y-1)*gridDim%x)*	&	
						(blockDim%x	*	blockDim%y)	
	do	i=ith-1,	sp_num_gpu,	nthreads_dim	
								if(ptl_gid_gpu(i)>0)	then	
											x=ptl_ph_gpu(i,1:2)	
											phi=ptl_ph_gpu(i,3)	
											phi_mid=(floor(phi/grid_delta_phi)	+	0.5_work_p)	*			&				
											grid_delta_phi	
											call	field_following_pos2_gpu(x,phi,phi_mid,xff)	
											call	search_tr2_gpu(xff,itr,p)	
																.	
																.	

	call		
pushe_kernel_gpu<<<blocks,t
hreads>>>(istep,epc,phase0_g
pu,diag_on,dt_now)	
							

Launch	GPU	kernel	in		
host	program	

GPU	kernel	subrou1ne	

Call	host	program	in	FORTRAN	

#ifdef	USE_GPU	
						call	pushe_gpu	(istep,…,…)	
#else	
						call	pushe	(istep,…,…)	
#endif	

NERSC	 54	

Current Implementation XGC1 code(example)

•  Use preprocessor statement to
switch between OpenMP and
OpenACC

•  Vectorization is critical for both
Cori and Summit

NERSC	 55	

#ifdef	_OPENACC	
!$acc	kernels	present(Ms,EDs)	ASYNC(istream)	
!$acc	loop	independent		collapse(2)	gang	
#else	
!$OMP		PARALLEL	DO	default(none)	&	
!$OMP&	shared(mesh_Nzm1,mesh_Nrm1,f_half,dfdr,dfdz,Ms)	&	
!$OMP&	shared(cs1,cs2,EDs,mass1,mass2)	&	
!$OMP&	PRIVATE(index_I,index_J,	index_2D,	index_ip,	index_jp,	index_2dp,	&	
!$OMP&	shared(cs1_mesh_r_half,cs1_mesh_z_half)	&	
!$OMP&	shared(cs2_mesh_r_half,cs2_mesh_z_half)	&	
!$OMP&	num_threads(col_f_nthreads)	
#endif				
								do	index_I=1,	mesh_Nzm1					
								do	index_J=1,	mesh_Nrm1								
													z	=	cs1_mesh_z_half(index_I)	
													
!$acc							loop	independent	collapse(2)	vector													
								do	index_ip	=	1,	mesh_Nzm1													
								do	index_jp	=	1,	mesh_Nrm1																
													c	=	cs2_mesh_z_half(index_ip)	
													
#ifdef	_OPENACC	
!$acc	end	kernels	
#endif	

Some Recommendations from Portability Workshop
Especially w.r.t. Library Portability

•  Common	base	soiware	environment	across	HPC	Centers	
–  Base	HPC	so=ware	stack	(standard	base	set	of	libs,	tools)	
–  Share	so=ware	build,	installaZon,	management,	tesZng	procedures/mechanisms	

for	HPC	centers	(e.g.	spack)	
–  SW	development	uZliZes	for	users	
–  Common	build	recipes,	methods	at	HPC	centers	

•  Performance	portability:	encourage	investment,	adop1on,	&	guidance	
–  Back-end	code	generaZon	
–  Compiler-based	approaches:	LLVM/JIT,	Rose		
–  Open	Standards	for	Parallel	CompuZng	
–  C++11/14/17	

•  DOE	investment	in	standards	commikees	
•  Library	developers	can	define	strict	interface,	then	ask	vendors	to	

confirm	to	them	
•  Extensions	to	MPI	to	exploit	fine-grained	parallelism	(intra-node)	
•  Ability	to	transform	individual	research	projects	or	libraries	into	

produc1on	capabili1es	

No One-Size Fits all solutions

•  With	MPI	we	made	it	work,	eventually	
•  Didn’t	maker	which	of	the	characteris1cs	your	
applica1on	had	–	
–  ParZcles	–	divide	among	processors	
–  Grid	–	hand-off	secZons	
– Matrix	–divide	off	rows	and	columns	

•  We	may	come	to	the	conclusions	that	no	one	
heterogeneous	architecture	nor	one	single	parallel	
programming	model	will	work	for	all	applica1ons	
	

Portable parallel programming is
in bad shape. Who to blame?
•  Application programmers …

This mess is your fault!

58

•  When you reward vendors for bad behavior
(e.g. pushing their own standards), you get
what you deserve.

•  History has shown you the solution!

•  We live in a market economy. Your interests (consistent and
stable environments across platforms from multiple vendors)
are not the same as the vendor’s interests.

– Unite and fight back. Revolt and force the change you need!!!!
–  Isolated, you lack power. Together you can shape the industry.
–  Just look at the creation of MPI and OpenMP and OpenCL.
– Be firm in your resolve:

– ONLY USE vendor neutral, open standards (e.g. OpenMP, OpenCL, MPI)
–  Standards take commitment and hard work. Join us in that work.

NERSC is the Mission HPC Facility for DOE
Office of Science Research

Bio	Energy,		Environment	 CompuZng	 Materials,	Chemistry,		
Geophysics	

ParZcle	Physics,	
Astrophysics	

Largest	funder	of	physical	
science	research	in	U.S.		

Nuclear	Physics	 Fusion	Energy,	
Plasma	Physics	

-	59	-	

